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MODELLING INDIRECT TENSILE STRENGTH OF WARM MIX  
ASPHALT WITH VARIABLE RECLAIMED ASPHALT  

PAVEMENT (RAP) CONTENT 
 

Abstract 
Introduction. There is a world-wide trend to also increase the sustainability of the road sector. 

The growing use of various industrial by-products, together with economical and eco-friendly construction 
and maintenance techniques can be observed in many countries. 

Problem Statement. The utilization of warm mix asphalt and the use of relatively high share of 
reclaimed asphalt materials in new asphalt mixtures can have negative features, as well. 

Purpose. Modelling indirect tensile strength of warm mix asphalt with variable reclaimed asphalt 
pavement (RAP) content was aimed at based on Hungarian laboratory test series. 

Materials and Methods. Three models were developed for the prediction of indirect tensile strength, 
this important asphalt mechanical parameter of warm mix asphalt as a function of Foamed Bitumen Content 
(FBC) and the RAP share in the new asphalt mixture. Among others, linear regression analysis and support 
vector regression (SVR) models were applied.  

Results. A comparison performed between Random Forest and Neural Network models illustrates and 
proves the versatility of machine learning techniques in predicting asphalt indirect tensile strength values 
both in wet and dry conditions. The research work enhances our understanding of the multifaceted dynamics 
influencing the performance of asphalt mixtures, offering valuable insights for optimizing pavement design 
and construction practices in diverse environmental conditions. The model developed successfully captures 
the relationship between the ITS (wet and dry) metric and its contributing factors, Foamed Bitumen Content 
(FBC) and RAP, with a high R-squared value. 

Keywords: foamed bitumen; warm mix asphalt; Neural Network; support vector regression model; 
Machine learning. 

Introduction 

Ninety-six percent of the extensive road network, encompassing a substantial expanse of four million 
feet, is enveloped by asphalt, underscoring the pervasive integration of this material [1]. The vitality of 
pavement integrity is contingent upon the nuanced interplay of asphalt mixtures, wherein sophisticated 
design methodologies assume the role of orchestrators for achieving desirable engineering attributes. Taking 
centre stage in this milieu are the Superpave method, the Bailey method, the Coarse Aggregate Void Filling 
method (CVAF), Marshall method and the Balanced Mix method each distinguished as prominent 
methodologies that intricately contribute to the formulation of asphalt mixtures [2, 3]. 

The growing interest in warm mix asphalt (WMA) and its associated benefits has become more 
pronounced in recent years, driven by the potential for reduced costs in road projects, energy efficiency, and 
decreased fuel consumption. WMA's additional environmental advantages, particularly in emission 
reduction, contribute positively to both environmental conservation and the well-being of workers. Various 
technologies have emerged to address the need for lower temperatures in pavement construction, foaming 
asphalt (bitumen) standing out as an important key in the sustainable pavement construction [4]. 

The utilization of foam bitumen technology extends widely to the stabilization of base layers, offering 
a multitude of benefits. These include fortifying the base layer for increased strength, resulting in reduced 
pavement thickness requirements, enhanced resistance to water permeability, fewer construction-induced 
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wet spots, and heightened resilience to adverse weather conditions. The inception of foaming bitumen dates 
back to 1956 when Professor Csanyi introduced the concept at Iowa State University [5]. Subsequent 
advancements by Mobil Oil, including the introduction of an expansion chamber, further refined the 
technology. 

The mechanics of foam bitumen involve a meticulous blending of water, air, and bitumen within the 
expansion chamber. This orchestrated process entails injecting a small quantity of cold water into hot 
bitumen, causing it to expand to approximately fifteen times its original volume [6]. The characteristics of 
foam bitumen, such as the expansion ratio (ER) and half-life (HL), are intricately influenced by factors such 
as bitumen temperature, water percentage, air pressure, and bitumen quality. It's noteworthy that an increased 
water content amplifies the expansion ratio while concurrently diminishing the half-life a delicate balance in 
the intricate operation of sustainable pavement construction. 

In addressing environmental sustainability concerns, there is a growing inclination towards optimizing 
the utilization of recycled asphalt materials (RAM), encompassing both reclaimed asphalt pavement (RAP) 
and recycled asphalt shingles (RAS). The amalgamation of RAM into novel asphalt mixtures not only serves 
to mitigate material costs but also contributes to the conservation of non-renewable resources. An 
investigation conducted by the National Asphalt Pavement Association (NAPA) in 2018 underscored a 
discernible trend, spotlighting a continuous increase in the nationwide average percentage of RAP in asphalt 
mixtures—from 15.6 % in 2009 to 21.1 % in 2018. Furthermore, the utilization of RAS experienced a notable 
upswing of 11.6 % between 2017 and 2018. Intriguingly, a significant 77 % of State Asphalt Paving 
Associations voiced the perspective that there remains untapped potential to further augment the assimilation 
of these recycled materials [7]. 

Studies have delved into the performance of foam bitumen mix (FBM) with varying reclaimed  
asphalt pavement (RAP) content, as explored by [8] and [9]. The examination of microstructures, particularly 
the effectiveness of mix coating, has been conducted using scanning electron microscope (SEM),  
as evidenced by studies such as those by [10] and [11]. The utilization of SEM and X-ray computed 
tomography has further been employed to scrutinize air void distribution in recycled mixtures, as reported 
in studies by [12] and [13]. 

To enhance the efficiency of laboratory experiments, researchers have employed modelling techniques 
such as artificial neural networks and design of experiments to identify the optimal bitumen content  
for various mixes. This approach has been exemplified in studies by [14]. Notably, it specifically evaluated 
the best binder content for warm recycled aggregate mixtures through the application of response  
surface methodology. 

Background 

Influence of binder 
In a comprehensive exploration, Abreu et al. [15] delved into the influence of bitumen grade on 

foaming, particularly when combined with varying Reclaimed Asphalt Pavement (RAP) content in Foam 
Bitumen Mixtures (FBM). Their findings indicated that a softer grade of bitumen becomes imperative as the 
RAP content increases, leading to improved results in the foaming process. This insight emphasizes the 
nuanced relationship between bitumen characteristics and RAP content in optimizing foaming outcomes. 

Arefin et al. [16] contributed to the body of knowledge by examining the short and long-term aging 
effects of Foam Bitumen Mixtures (FBM). Their research underscored the pivotal role of binder quality in 
influencing the aging process of the mixture. This conclusion accentuates the significance of considering the 
inherent properties of the binder in evaluating the durability and performance of foamed asphalt mixtures 
over time. 

In a more recent investigation, Kar et al. [17] focused on understanding how the asphaltene and 
aromatic content of bitumen affect foaming characteristics. By scrutinizing these specific components, the 
study provided valuable insights into the intricate relationship between bitumen composition and the foaming 
process, contributing to the ongoing refinement of foamed asphalt technologies. 

Notably, studies by Bairgi et al. [18] and Hasan et al. [19] challenged conventional notions by 
revealing that the elastic behaviour, as measured by elastic modulus, of the foamed binder does not exhibit 
a direct correlation with the foaming water content. This divergence from conventional expectations suggests 
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that the complex interplay of factors influencing the foaming process extends beyond a straightforward 
relationship between elastic modulus and foaming water content. 

Influence of RAP Content on FBM Performance 
The impact of reclaimed asphalt pavement (RAP) content on the performance of Foam Bitumen  

Mix (FBM) has been subject to various investigations. Taziani et al. [20] conducted an assessment  
on FBM containing 100 % RAP and Portland cement as a filler. Their study involved the evaluation of 
dynamic creep and dynamic modulus, with comparisons drawn against the addition of fibres into the mix. 
The findings highlighted a notable positive influence on FBM performance attributed to the inclusion of 
fibers and cement. 

Chomicz-Kowalska and Ramiączek [21] engaged in a comparative analysis between foam mix and 
emulsion mix. Their evaluation considered different laboratory compaction methods and varied percentages 
of RAP material. The results shed light on the impact of these factors on the properties of both mixes, 
emphasizing the significance of RAP content in influencing performance. 

Hou et al. [22] delved into the study of RAP gradation's effect on the dynamic modulus of FBM under 
low temperatures (sub-zero area). Their research indicated that coarser gradations had a diminishing effect 
on the dynamic modulus of FBM at low temperatures. However, this influence was not significant at higher 
temperatures. 

Guatimosim et al. [23] conducted a comprehensive assessment involving laboratory and field 
evaluations of cold recycled mix with foamed bitumen. Their results demonstrated early-stage damage in 
comparison to conventional mixtures. Over time, the deflection reduced with an increase in layer stiffness, 
emphasizing the evolving nature of FBM performance. 

Impact of Mixing Temperature on FBM Performance 
Foamed bitumen mixes are placed and compacted at ambient temperatures, often referred to as cold 

mixes, the role of mixing temperature becomes crucial. Several studies have underscored the significance of 
heating aggregates for improved coating and enhanced engineering properties [4]. Research indicates that 
the optimum mixing temperature for foamed asphalt mixes falls within the range of 13 °C to 23 °C, 
dependent on the aggregate type. Aggregates below this temperature range result in a lower quality foam 
asphalt mix [5]. 

Sánchez et al. [24] elevated aggregate temperatures up to 160 °C while preparing FBM samples  
with 60 % RAP content. Their findings indicated that exceeding an aggregate temperature increase of 90 °C 
resulted in the aging of RAP, subsequently reducing fatigue resistance. This underscores the importance of 
carefully controlling mixing temperatures to ensure optimal performance and longevity of foamed  
bitumen mixes. 

Impact of foamed bitumen content 
Foamed asphalt binders showcase diminished resistance to shear deformation when juxtaposed with 

their unfoamed counterparts. The foaming of asphalt, in turn, augments fatigue performance by mitigating 
asphalt stiffness. This amelioration is ascribed to the reduced temperatures required for mixing and 
compaction in foamed warm mixes, resulting in a decrease in aging effects. The inclusion of aged binder 
from reclaimed asphalt pavement (RAP) plays a pivotal role in compensating for the softer warm mix binder, 
thereby contributing to the mitigation of aging in asphalt binders within Foamed Warm Mix Asphalt 
(FWMA) containing RAP. Consequently, this intricate interplay underscores the potential advantages of 
asphalt foaming in optimizing fatigue resistance, particularly in scenarios involving the incorporation of 
recycled materials like RAP [25]. 

Methodology 

Determination of aggregate gradation and optimum moisture content 
Mixed operations involved the use of two gradations containing 100 % reclaimed asphalt  

pavement (RAP), two with 75 % RAP, two with 50 % RAP, two with 25 % RAP, and two consisting entirely 
of virgin aggregate all adhering to standard specifications (Fig. 1). The maximum specific gravity (Gmm) 
for these gradations were recorded as follows: 2.464, 2.471, 2.476, 2.468 and 2.474, respectively. 



CONSTRUCTION AND CIVIL ENGINEERING 

 

 

Збірник наукових праць «ДОРОГИ І МОСТИ» www.dorogimosti.org.ua  
160  ISSN 2524-0994 (Print), ISSN 2786-488X (Online). Dorogi i mosti, 2024. Issue 30 

 
Figure 1 —  Gradations selected 

 

Determination of optimum moisture content 
In our comprehensive testing series, the bitumen 70/100 was focused on, actually its compatibility 

with the specified standards. The results demonstrated that bitumen 70/100 met the prescribed criteria, 
further solidifying its suitability for effective aggregate stabilization in road construction applications. The 
culmination of these procedures yields optimal foamed bitumen characteristics, as evidenced by a half-life 
of 10.2 seconds and an expansion ratio of 12.6 times. These desirable properties are attained specifically 
with a 2 % water content at a bitumen temperature of 170 °C. Notably, these foam characteristics align with 
the prescribed standards, as articulated by the Wirtgen Group [6], demanding a minimum expansion ratio of 
8 times the original volume and a half-life of 6 seconds for effective aggregate stabilization at temperatures 
exceeding 15 °C (Figs. 2 – 4).  

 

 
Figure 2 —  Expansion Ratio & Half Life for bitumen 70/100 in 160 °C  
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Figure 3 — Expansion Ratio & Half Life for bitumen 70/100 in 170 °C 

 

 
Figure 4 — Expansion Ratio & Half Life for bitumen 70/100 in 180 °C 
 

 
 

Figure 5 — ITS values as a function of FBC (%) and RAP (%) 
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Optimization of foam bitumen 
The results in Figure 5 illustrates the influence of both FBC and RAP percentages on the strength of 

the asphalt mixtures under different conditions. The data suggests that variations in these percentages can 
lead to significant differences in ITS, emphasizing the importance of carefully selecting FBC and RAP 
proportions for achieving desired performance characteristics in asphalt mixtures, particularly with respect 
to strength in wet and dry conditions. 

TSR (Tensile Strength Ratio) in Indirect Tensile Strength (ITS) testing is a critical parameter for 
evaluating the thermal cracking resistance of asphalt mixtures. This testing method assesses the material's 
tensile strength under different temperature conditions. The TSR is calculated by comparing tensile strength 
at low and high temperatures. A high TSR indicates better resistance to cracking in cold weather, while a 
low TSR suggests susceptibility to thermal cracking. Overall, TSR in ITS testing helps in designing and 
selecting asphalt materials that can withstand diverse temperature conditions, ensuring the durability of 
asphalt pavements [26]. 

In Figure 6, the Tensile Strength Ratio (TSR) values are depicted for various combinations of 
Reclaimed Asphalt Pavement (RAP) and Foam Bitumen Content (FBC). All data points exhibit TSR values 
equal to or greater than 70, except for the specific case of (RAP 25 % with FBC 3.5 %), suggesting potential 
vulnerability to thermal cracking in this percentages. 

 
Figure 6 — Tensile Strength Ratio values as a function of  FBC (%) and RAP (%) 

Machine learning models 

Support Vector regression (SVR) 
The concept of Support Vector Machines for regression problems was initially introduced by Vapnik 

et al. [27] serving as a margin of tolerance (epsilon), is individually determined. Samples outside this region 
contribute to the calculation of the overall loss. The essence of SVR lies in fitting the target curve to minimize 
errors and customize the hyperplane for maximizing the margin. 

The versatility of the SVR algorithm has been increasingly utilized for predicting various properties 
of asphalt mixtures in recent research. Notably, SVR has proven to be a precise model for predicting the 
dynamic modulus [28], [29] in predicting the dynamic modulus of Hot Mix Asphalt (HMA) [28]. 
Furthermore, SVR models have successfully predicted rut depth and indirect tensile strength of asphalt 
mixtures [30], [31]. Significantly, SVR models have also been developed for predicting pavement conditions 
with promising outcomes [32], [33]. This highlights the versatility and efficacy of SVR in diverse 
applications within the realm of asphalt research and pavement performance prediction. 
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Adam optimizer 
The Adam optimizer is a popular optimization algorithm used in training neural networks. It stands 

for Adaptive Moment Estimation, and it combines techniques from two other optimization algorithms: 
Momentum optimization and RMSProp (Root Mean Square Propagation). Adam is known for its 
effectiveness in handling sparse gradients, noisy data, and non-stationary objective functions. Adam's 
adaptive learning rates for each parameter and its momentum-like behaviour make it well-suited for training 
deep neural networks. It combines the advantages of both momentum and RMSProp, providing robust and 
efficient optimization for a wide range of deep learning tasks [34]. 

Random Forest (RF) 
Ensemble approaches leverage the synergy of multiple learning algorithms to enhance predictive 

performance beyond the capabilities of individual algorithms [35]. Bagging (Bootstrap Aggregating)  
is a prominent method within ensemble learning, and Random Forest emerges as an advanced iteration,  
building on the principles of bootstrap aggregation. This technique aggregates predictions from a series of 
decision trees [36]. 

Random Forest distinguishes itself from bagging by introducing a unique advantage it can selectively 
choose a subset of features for splitting when constructing each decision tree. This feature significantly 
reduces the model's variance without introducing undue prediction bias. In the Random  
Forest algorithm, the final output is determined through a majority voting mechanism, especially in 
regression scenarios. 

Random Forest has demonstrated effectiveness in predicting critical characteristics such as dynamic 
modulus [9], rut depth [37], International Roughness Index (IRI) [37], alligator cracking [38], and pavement 
friction [39]. Its flexibility and robustness position Random Forest as a valuable tool in asphalt research, 
contributing to precise predictions and informed decision-making in the evaluation of pavement properties 
and performance. 

Bitumen foaming model 
Three models were built, the first model is a regression task in machine learning, specifically using a 

neural network to predict the 'ITS' based on input features 'FBC' and 'RAP'. The model utilizes a training 
loop that refines the model iteratively until the model be able to simulate and study a lot of new values with 
different conditions. 

The second model was built based on the previous one, it conducts linear regression analysis on a 
dataset comprising four columns: 'FBC', 'RAP', 'ITS_Dry', and 'ITS_Wet'. 

The third model was utilizing Support Vector Regression (SVR) to predict Indirect Tensile Strength 
(ITS) under wet and dry conditions was used. 

After that, RF model was built to check the previous models, two separate instances are trained for 
wet and dry conditions. Following training, the models are evaluated on the test set, and the mean squared 
error is calculated to quantify their predictive performance. 

Results 

Relationship between input and ITS 
Foamed Bitumen Content (FBC) Impact on ITS 
Mechanical Properties: The foamed bitumen content increases the stiffness and flexibility of the 

asphalt mixture. 
Enhanced Performance: Properly controlled FBC can lead to improved adhesion between aggregates 

and the bitumen binder. This enhanced adhesion can contribute to higher indirect tensile strength (ITS), 
indicating better resistance to cracking and improved overall performance of the pavement. 

Reclaimed Asphalt Pavement (RAP) Influence on Mechanical Properties 
Sustainability: The use of RAP in asphalt mixes is a sustainable practice as it reduces the demand for 

virgin materials and minimizes the environmental impact associated with asphalt production. 
ITS and Durability: The balanced use of RAP contributes to a mix of good durability and resistance 

to distress, enhancing the long-term performance of the pavement. 
Customization: The combined use of FBC and RAP allows to customize asphalt mix designs to meet 

specific project requirements, considering factors such as climate, traffic loads, and pavement structure. 
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Performance of ML models 
The first model in this machine learning regression task utilizes a neural network to predict the Indirect 

Tensile Strength ('ITS') based on input features 'FBC' and 'RAP.' The model undergoes a training loop, 
refining itself iteratively to simulate and study a wide range of new values under different conditions.  
In the data preparation step, input features are consolidated into a NumPy array `X`, and the target variable 
'ITS' is stored in an array `y`. The training loop involves splitting the data into training and testing sets, 
standardizing features using `StandardScaler`, and constructing a neural network with specific architecture 
using the Keras API. 

The neural network comprises an input layer with 2 neurons, a hidden layer with 64 neurons and 'relu' 
activation, another hidden layer with 32 neurons and 'relu' activation, and an output layer with 1 neuron for 
regression. The model is compiled using the Adam optimizer and mean squared error loss. It is then trained 
on standardized data for 200 epochs. The Mean Squared Error on the test data and R-squared are calculated, 
and the training history, including plots of loss, validation loss, and R2, is visualized in Figure 7. 

 

 

Figure 7 — Training and Validation Loss histories (model 1) 
 

 

Figure 8 — 3D scatter plot of ITS values as a function of FBC (%) and RAP (%) 

R2: 0.734 
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Figure 8 displays 3D scatter plots that result from the trained model, offering a visual representation 
of the relationship between true and predicted 'ITS' values. These plots provide insights into how well the 
model aligns with the actual data. Additionally, Figure 9 shows 2D scatter plots captured during the training 
process, allowing observation of the evolution and adjustments in the model's predictions over time. 

A correlation analysis between the variables investigated was performed, as shown in Figure 10. 
 

 

Figure 9 — 2D scatter plots of ITS values during training process 
 

 
Figure 10 — Correlation analysis (model 1) 
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The final equation of the model is expressed as: 

ITS = 0.294 · FBC + 13.57 · RAP + 387.49.    (1) 

This equation captures the relationship learned by the neural network between the input features and 
the predicted 'ITS' values.  

The training process involves the use of the mean squared error (MSE) loss function and the Adam 
optimizer. The key equations associated with the learning process include: 

(1) MSE Loss Function: 

𝑀𝑆𝐸 =  
ଵ

௡
∑ (𝑦௜  − ŷ௜)ଶ௡

௜ୀଵ .     (2)  

The Mean Squared Error is employed as the loss function, where n is the number of data points, yi is 
the true 'ITS' value, and ŷi is the predicted 'ITS' value. 

(2) Adam Optimization: 
The Adam optimizer updates the model weights using the following equations: 

update rules at each time step (t): 

 t = t + 1,      (3) 

compute gradient at time step t: 

𝑔௧ =  ∇ఏ · 𝐽 (𝜃௧) ,     (4) 

update first moment estimate: 

 𝑚௧ =  𝛽ଵ · 𝑚௧ିଵ + (1 − 𝛽ଵ) · 𝑔௧ ,    (5) 

update second moment estimate: 

𝑚௧ =  𝛽ଵ · 𝑚௧ିଵ + (1 − 𝛽ଵ) · 𝑔௧,    (6) 

bias-corrected first moment estimate: 

𝑚ෝ௧ =  
௠೟

ଵି ఉభ
೟ ,      (7) 

bias-corrected second moment estimate: 

𝑣ො௧ =  
௩೟

ଵି ఉమ
೟ ,      (8) 

update parameters:  

𝜃௧ାଵ =  𝜃௧ −  𝛼 ·  
௠ෝ ೟

ඥ௩ො೟ାఌ
  .     (9) 

Here, J (θt) represents the objective function with respect to the parameters θt, ∇θ · J (θt) is the gradient 
of the objective function, and ε is a small constant (e.g., (1e-8 ) added to avoid division by zero. 

These equations play a crucial role in adjusting the model parameters during training, aiming to 
minimize the MSE loss and enhance the predictive accuracy of the 'ITS' values. 

The second model performs linear regression analysis on a dataset containing four columns: 'FBC', 
'RAP', 'ITS_Dry', and 'ITS_Wet.' The data is loaded into a Pandas DataFrame and then divided into features 
(X) and target variables (y). The dataset undergoes further partitioning into training (80 %) and testing (20 %) 
sets using `train_test_split`. To maintain consistent scales across features, feature scaling is applied using 
`StandardScaler`. 

The linear regression model is trained on the training data utilizing the `LinearRegression` class from 
scikit-learn. Predictions are generated on the scaled test set. Notably, this model considers both 'ITS_Dry' 
and 'ITS_Wet' as distinct outputs. Visual assessment of the model's performance is conducted through the 
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creation of two scatter plots (Fig. 11). The first subplot presents a scatter plot with the line of best fit for 
'ITS_Dry,' while the second subplot does the same for 'ITS_Wet.' 

The correlation analysis was performed as shown in Figure 12. 
 

 
Figure 11 — Scatter Plot with Line of Best Fit for ITS Dry and ITS wet (model 2) 

 

Figure 12 — Correlation analysis (model 2) 
 

The Neural Network models are designed with two hidden layers, comprising 256 and 128 neurons, 
and ReLU activation functions. These models are compiled using the Adam optimizer with a learning rate 
of 0.001 and mean squared error loss. The features are standardized using `StandardScaler`, and the Neural 
Network models are then trained for 300 epochs as shown in Figure 13. 
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Figure 13 — Neural network training history (model 3) 

 
The third model utilizes Support Vector Regression (SVR) to predict Indirect Tensile Strength (ITS) 

under wet and dry conditions was used. The dataset is structured with features ('FBC' and 'RAP') and 
corresponding target variables ('ITS_wet' and 'ITS_dry'). The dataset is then split into training and testing 
sets for both wet and dry conditions. To ensure consistent scaling, feature standardization is performed  
using `StandardScaler`. Two SVR models are trained separately for wet and dry conditions, employing a 
linear kernel. 

Following training, predictions are made on the test set, and model performance is evaluated using 
key metrics such as R-squared and correlation coefficients for both wet and dry conditions. The dataset is 
split into training and testing sets, and feature standardization is performed using `StandardScaler`. 
The model is trained for 300 epochs with a batch size of 32, and the training history (Fig. 14), including loss 
and validation loss. 

 
Figure 14 —Training and Validation Loss histories (model 3) 
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The ITS metric performance is: 
For ITS wet: R-squared: 0.7125; correlation: – 0.025. 
For ITS dry: R-squared: 0.7801; correlation: – 0.023. 

The ITS metric performance is: 
For ITS wet: R-squared: 0.7125; correlation: – 0.025. 
For ITS dry: R-squared: 0.7801; correlation: – 0.023. 

The resulted equations for this model were: 

ITS wet = 341.33+ – 1.44 · FBC + 2.81 · RAP ,    (10)  

ITS dry = 412.30 + – 1.48 · FBC + 2.77 · RAP.     (11)  

In the checking model (using Random Forest) scatter plots are generated to provide a visual 
representation of the predictions made by both Random Forest and Neural Network models against the true 
'ITS' values for both wet and dry conditions (Fig. 15). 

Furthermore, a correlation analysis is conducted to determine the correlation coefficients between 
thetrue and predicted 'ITS' values for both Random Forest and Neural Network models in wet and dry 
conditions (Fig. 16). 

The model evaluates two predictive models, namely Random Forest and Neural Network,  
for estimating 'ITS' values in both wet and dry conditions based on the features 'FBC' and 'RAP'. The  
Random Forest models are constructed using the `Random Forest Regressor` from scikit-learn with 
100 estimators, while the Neural Network models are built using Keras with a consistent architecture for wet 
and dry conditions. 

 

 
 
Figure 15 — Scatter plot of ITS Wet and Dry values predicted by Random Forest and Neural Network 

models (model 3) 
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Figure 16 — Correlation analysis with correlation coefficients (model 3) 

 
 

Conclusions 

In conclusion, the comprehensive analysis undertaken in this study sheds light on the intricate 
relationships between foamed bitumen content (FBC), reclaimed asphalt pavement (RAP), and the indirect 
tensile strength (ITS) of asphalt mixtures. The impact of FBC on mechanical properties and enhanced 
performance, coupled with the sustainable practices associated with RAP, collectively contribute to the 
overall durability and resistance to distress of asphalt pavements. 

The developed model successfully captures the relationship between ITS metric and its contributing 
factors, FBC and RAP. The model demonstrates a reasonably high R2-value of 0.734, indicating a good fit 
to the data. 

Further analysis of the model's performance in different conditions reveals that the ITS metric  
exhibits distinct behaviour in wet and dry conditions. For ITS wet, the R2-value of 0.712 and a 
low correlation of — 0.025 suggest a moderate fit to the data. In contrast, ITS dry demonstrates a higher  
R2-value of 0.780 and a similarly low correlation of — 0.02, indicating a slightly better fit in dry conditions. 

Linear regression analysis and support vector regression (SVR) models are also explored, each 
providing valuable insights into the prediction of ITS under different conditions. The models' evaluation, 
including scatter plots, correlation analyses, and R2-metrics, demonstrates the effectiveness of these 
approaches in capturing the inherent complexities of the asphalt mixture. 

Furthermore, the comparison between Random Forest and Neural Network models proves the 
versatility of ML techniques in predicting asphalt ITS values for both wet and dry conditions. 
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МОДЕЛЮВАННЯ НЕПРЯМОЇ МІЦНОСТІ НА РОЗТЯГ ТЕПЛИХ 
АСФАЛЬТОБЕТОННИХ СУМІШЕЙ ЗІ ЗМІННИМ ВМІСТОМ РЕГЕНЕРОВАНОГО 

АСФАЛЬТОБЕТОННОГО ПОКРИТТЯ (RAP) 
 

Анотація   
Вступ. Сьогодні існує світова тенденція підвищення стійкості дорожнього сектора. У багатьох 

країнах спостерігається зростання використання різних промислових відходів, а також економічних 
та екологічних методів будівництва і технічного обслуговування. 

Постановка проблеми. Використання теплих асфальтобетонних сумішей та застосування 
відносно високого вмісту регенерованих асфальтобетонних матеріалів у нових асфальтобетонних 
сумішах також може мати негативні наслідки. 

Мета. Метою дослідження було моделювання непрямої міцності на розтяг теплих 
асфальтобетонних сумішей зі змінним вмістом регенерованого асфальтобетонного покриття (RAP) 
на основі серії угорських лабораторних тестів. 

Матеріали та методи. Було розроблено три моделі для прогнозування непрямої міцності на 
розтяг, цього важливого механічного параметра теплих асфальтобетонних сумішей, як функції 
вмісту спіненого бітуму (FBC) та частки RAP у новій асфальтобетонній суміші. Зокрема,  
було застосовано методи лінійного регресійного аналізу та підтримуючих векторних регресійних 
моделей (SVR). 

Результати. Порівняння, проведене між моделями випадкового лісу та нейронної мережі, 
ілюструє та доводить універсальність методів машинного навчання у прогнозуванні значень 
непрямої міцності асфальтобетону як у вологих, так і в сухих умовах. Це дослідження покращує наше 
розуміння багатогранної динаміки, що впливає на ефективність асфальтобетонних сумішей, та надає 
цінні знання для оптимізації проектування та будівельних практик дорожнього покриття в різних 
умовах навколишнього середовища. Розроблена модель успішно відображає взаємозв’язок між 
показником ITS (вологий і сухий) та його чинниками, такими як вміст спіненого бітуму (FBC) і RAP, 
з високим значенням коефіцієнта детермінації R². 

Ключові слова: машинне навчання, модель підтримуючих векторів регресії, нейронна мережа, 
спінений бітум, теплий асфальтобетон.  
  


